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In a development of  the results obtained previously in [1] a version of  the design scheme for a low-mass wing is proposed. It 
takes the form of a system of spars with each of which a system of cantilevers is linked which participate in the formation of the 
upper and lower surfaces of  the wing. Here, the axes of the spars and the rods forming the wing surfaces are arranged in such 
a way that there are no torques in the cross-sections of these elements. The dimensions of the sections of each element are chosen 
so as to ensure equal strength. It is shown that, in the case of this wing scheme, the flexural vibration of the wing which randomly 
arise does not develop into bending-torsional vibration and does not lead to flutter. The mass of a wing for a light aircraft is 
estimated. © 1999 Elsevier Science Ltd. All rights reserved. 

1. D E S C R I P T I O N  OF T H E  W I N G  

We consider a wing of rectangular shape in plan view which takes up a distributed load (Fig. 1) 

p(x, y) = pl(x)p2(y ), x ~ [0, b], y ~ [0, l] 

where P l andp2 are specified continuous functions, the first of which characterizes the load distribution 
over the profile and the second characterizes the load distribution over the wing span in the calculated 
case. The wing is fixed in the plane y = 0. Suppose it is subdivided into m elements and each ith of 
them (i = 1 . . . . .  m) consists of a spar with an annular cross-section which is fixed on the fuselage as 
a cantilever and upper  and lower strips of wing skin which are fastened to the spar (Fig. 2) and take 
up the load confined between the planes x = x i and x = xi+ l. Here,  x i < xi+l, Xl = 0, Xm+l = b. The 
upper strip of a wing skin linked with the spar i is subdivided into m pairs of girders and each kth of 
them (k = 1 , . . . ,  mi) consists of a rod of annular cross-section (Fig. 3), which is joined in a cantilever 
manner to a spar and to a strip fixed to a rod from above which forms part of the upper surface of the 
wing between the planes y = y,  and y = Yk+ 1, where Yk < Yk+ 1. In a similar way, the lower strip of wing 
skin linked with the spar i is divided into cantilevers, each of which has the form of a rod of annular 
cross-section with a strip joined to it from below. 

Suppose the axis of any spar i is specified in the plane z = 0 by the linex = x~, which obeys the condition 
that there are no torques in the spar sections 

x c xi+ I 

pl (x) (x  c - x ) d x =  I p ~ ( x ) ( x - x ~ ) d x  (1.1) 
x i x c 

We assume that the change in the external radius of each spar along its axis is described by the function 
f(y), y ~ [0, l]. The bending moment  in a section of the spar i, which passes through the point (x~, y) of 
its axis, obviously has the form 

M i ( Y )  = I l l ( Y ) ;  

Xi+l I 
l i=  ~ p~(x)dx, l (y )=~  p 2 ( y ) ( y - y ) d y  (1.2) 

xi Y 

The stability condition [2] is 

oJi(Y) >" Mi (y ) f (Y )  (1.3) 

where o is the breaking point and Ji(Y) is the moment  of inertia of the section. Since in order  to reduce 
the wing mass, it is advantageous to increase the number of spars m [1], on decreasing the thickness 
of the annular cross-section of a spar in this case, the moment  of inertia of the cross-section of the spar 
i about the point (4, Y) of its axis can be taken in the form [2] 
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J,ty) = =P(y)a,ty) 

where 8i(y) is the thickness of the annular cross-section of this spar which is chosen, as we propose, 
such that the stability condition (1.3) takes the form of an equality. 

We shall assume that the external radius f(y) of the spar cross-section is several times smaller than 
the length (1 - y )  of the cantilever part of the spar corresponding to this section. When account is taken 
of this, it can be shown for the basic types of load distribution such as, for example, when this distribution 
is close to a uniform distribution (P20') = const), that the most dangerous points of the section as regards 
stability are those points where the normal stresses are a maximum and the shear stresses are zero. 
With this in mind, we shall neglect the effect of shear stresses, which are caused by shearing forces, on 
the stability. 

We shall henceforth use the stability condition (1.3) in the form of an equality. Using this condition, 
the area of cross-section of a spar is written in the form 

Fi(y) = 2Mi(,y)/[~f(.y)] (1.4) 

and the total mass of the spars, when account is taken of formulae (1.2), is expressed as 

G* 20/]1 j l(y) dy, h 
= f-~y) el = l  p,(x)a~ 

(Y o o 
(1.5) 

where p is the density of the wing material. If the spars are conical: fly) = f(0)(1 -y/1) and it is assumed 
that P2(Y) = const, then 

l 
G * =  PPI----~2 ", P =  PIP2, P2 = [ p2(y)dy ( 1 . 6 )  

2of(O) o 

where P is the overall load on the wing. 
We now consider the wing skin elements which are fixed to a spar. We shall assume that the pressure 

0 drop across the upper surface of the wing is described by the product pl(x)p2(y), and across the lower 
1 0 l surface of the wing is described by the product pa(x)p2(Y), where Pl  and Px are continuous functions. 

The upper strip of wing skin linked with the spar i includes two series of cantilevers. Each cantilever k 
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consists of a rod with a strip fixed to it which takes up the load confined between the planes y = Yk and 
Y = Yk+l. The axis of the rod and the line of fixing of the strip are arranged in the y = y~, plane, where 
the parametery~ satisfies the condition that there are no torques in the cross-sections of the rod which 
is analogous to condition (1.1) and is obtained from it by replacingx byy, the functionpl byp2 and the 
subscript i by the subscript k. 

A change in the external radius of any rod which is fixed to the spar i as viewed from the spar j is 
described by the functionj~y(x). Moreover, x E [xi, x~/] whenj  = 0, and x E [x c, Xi+l] whenj  =1. 

The total mass of the rods which are fastened to the spar i as viewed from the spar j to form the 
upper surface of the wing is expressed in a similar way to the first formula of (1.5) and, if it is assumed 
that the rods are conical, that is 

fiij (x) = R o (x - xi+ j ) I(x~ - xi+ j ) (1.7) 

where R0 is the external radius of the rod at the point of fixing to the spar, it can be written in the form 

0 * 
G ° = (_1)j PPl (xi)P2 (x~-xi+:) 3 (1.8) 

2oeo 

where x* is a value between x~ and xi+/. Denoting the greatest of the lengths of the rods by Ic and using 
the definition of an integral, it is possible to estimate the total mass of the rods participating in the 
formation of the upper surface of the wing. We obtain 

Go=x pO=pO , p (1.91 
2oR0 o 

where p0 is the total load on the upper surface of the wing. 
form the lower surface The total mass of the rods which are fastened to spar i as viewed from sparj to , 

by replaclngp l(xi ) by pl(xi ), where of the wing has a form which is analogous to (1.8) and is obtained • 0 1 *o 
x~" is a value between ~ and xi+j. For the total mass G1 of the rods participating in the formation of 
the lower surface of the wing, we obtain an estimate which has the form of estimate (1.9) after the 
quantity p0 in it has been replaced by the quantity p1 for the total load on the lower surface of the wing. 

Since, in order to reduce the mass of the wing, it is advantageous to increase the number of rods 
which take up the distributed load, we assume that 

y , = 2 R  o(k-1),  k = l  ..... mi, ra i = l / ( 2 R  0) 

which corresponds to the case when neighbouring rods touch. Taking account of this, we estimate the 
mass of the strips which produce the upper surface of the wing. We assume that p2(y) = p~ = const 
and we shall presume that each strip which is joined to a rod which is fastened to spar i as viewed from 
sparj  is formed as a cantilever of equal strength over the surface on which the pressure is distributed 

0=  P.._~.~ ~[ P°(x)dx (1.10) 
Pij X c _ Xi+j xi+J 

We will find the greatest height of a strip h °- using the stability condition for a cantilever of length 
bl/2 = Ro with a rectangular cross-section of a certain width b2 and variable height h, that is, we use 

0 2  0 2 the condition cr = 6M~i/[b2(hii) ], where ~ = Pijb2R~/2 is the bending moment. It follows from this that 
0 0 1/2 ~ * 0 h a = R0(3P~yTa) . On taking account of the fact that the mean height of a strip is hij/2, we write the 

expression for the total mass of the strips forming the upper surface of the wing as 

_ I G':pIR°(31~ ~. (P°)½(-1)J(x~-x i+j)  (1.11) 
2 k . ( ~ J  i=I j=O 

Then, using formula (1.10), we find an estimate of this mass 

G' <~PRo(3V°bl~ -~ )½ / 2 (1.12) 

The total mass G" of the strips forming the lower surface of the win has an estimate which is obtained 
from (1.12) by replacing p0 by p1. 
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Note that the parameter R0 and the len, gth of the conical rods which are fastened to the spars can 
be chosen so that the mass of the spars G are several times greater than the mass of the rods (G U + 
G 1) fastened to them and, in its turn, this mass will be several times greater than the mass of the strips 
forming the surface of the wing, (G' + G"). 

2. V I B R A T I O N  OF THE W I N G  

We shall assume that each rod participating in the formation of the wing skin is designed on the 
assumption that the load which is taken up by it is uniformly distributed along its length. In particular, 
the linear load on a rod k, which is fastened to a spar i as viewed from sparj  to form the upper surface 
of the wing, is assumed to be as follows: 

Yk+l 1 xf 
qijOk = ~ P 2 ( y ) d y -  p°(x)dx 

Yk xc  -- Xi+j xi+j 

then 

0 2 0 0 
a = M,7, 1, q°k (x  - / 2 MOj: (x)  = xi+ j )2 

(M~/jk(x) is the bending moment in a section around a certain point (x, y~  of the rod axis). Furthermore, in 
the case of the above-mentioned assumption, the total mass of the rods which are fastened to spar i as view- 
ed from sparj is described by the sum of two expressions, the first of which has the form of (1.8) in which 

0 * 1 x[ 
Pl (xi ) = .I P°l (x)dx c 

X i -- Xi+ j xi+j 

and the second expression is obtained from the first on replacingp°(x) byp~(x). 
When account is taken of this, assuming that 

t~ (x) = ajpl(x) 

where aj (j = 0, 1) are the chosen constants, we have the following expression for the distribution of 
the mass of the rods, which are fastened to the spar i, along its axis 

g * ( y ) = u ( y  (x c - x i )  = i PI( x)dx+(Xi+l --X~')2xT pI(X)dx 
xi x~ 

where 

u(y) = (a o + a I )PPz (Y)/(2~R0) (2.1) 

The expression g~ (y) can be approximately replaced by the following 

gi(Y) = u(y) (xi+l - Xi)2 XT p I (x)dx (2.2) 
4 xi 

We will estimate the error arising from this replacement, assuming that the function pl(x) is linear 
in the interval [xi, xi+ 1]: pl(x)  = Pl + p~x where p 7 ,  0 (in the case when p~ = 0, there is no error). After 
some calculations, we obtain 

g~(Y ) -g i (Y )  (xi+j - x i ) 4  (2.3) 
gi (Y)  27(Xi+1 + Xi + 2Pi / P~ )4 

It is clear that the greatest error corresponds to the end spar. On substituting the values/3i = 0 and 
xi = 0 for i = 1 into expression (2.3), we find that this error does not exceed 4%. If account is taken of 
the fact that the form of vibration of a wing spar depends on the sum of the total linear masses of the 
spar and the rods which are fastened to it, the relative error is even smaller. Allowing for this, we shall 
use formula (2.2) for the distribution of the mass of the rods linked with spar i. 
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We assume that the rod parameters are chosen such that the mass of the strips joined to them is 
negligibly small compared with the mass of the rods and spars so thall not take account of the mass of 
the strips in treating the wing vibration. 

Using formulae (1.2) and (1.3), we write the moment of inertia of a cross-section of a spar i in the 
form 

.It(y) = lJ(yff(y)/~ (2.4) 

and write the mass per unit length of spar i, taking account of (1.4) and (1.2), in the form 

pF~(y) : 2pU(y)/[ofly)] (2.5) 

Assuming that 

X i = (i - 1)1,, 1, = b/m, i = 1 ..... m (2.6) 

we have from (2.2) an expression for the mass distribution of the rods 

gi(Y) = u(y)12* li / 4 (2.7) 

The centre of mass of a section of the wing is the point (xg, y) with the coordinate (henceforth 
summation is carried out from i = 1 to i = m) 

xg = ~ [pF//(y) + gl (Y)] xc / ]~ [pF/(y) + gi (Y)] 

from where, on taking account of (2.5) and (2.7), we have xg = Y-Jix~/Zli. By the centre of rigidity of a 
cross-section of the wing we mean [3] the point (x°, y) with coordinate 

x.  = Z F-.Ji(Y)X c I[ZEJi(y)] 

where E is the modulus of elasticity. Then, on taking account of (2.4), we conclude thatx.  = x_ Hence, 
if all the spars have the same initial flexure, then, after the load has been removed, the wing will execute 
free bending vibration in a vacuum, described by the equation [3] 

02 I 02z] 02z 
OY 2 E Z J i ( Y ) v J +  E [ p ~ ( y ) + g i ( y ) ] ~ t 2 : 0  (2.8) 

(t is the time). On taking account of (2.4), (2.5) and (2.7) and dividing by Y-Ji, we have 

E 02 [ ~22] [2pafI~;~. 12*u(Y)]O2z 
OY z l ( y ) f ( y )  + * 4 J ~ t  2 =0  (2.9) 

The free vibration of each spar is described in this manner. We assume that the wing spars are all 
fixed in the same way. Hence, for the same initial form of flexure, they will execute the same vibration 
in a vacuum, which does not lead to any distortion and twisting of the wing profile. 

We shall now dwell on the bending and vibration in an air stream. We shall assume that the expected 
load distribution of the wing in the case of an angle of attack a and a dynamic pressure q is described 
by the product ptxq(X)p2(y), where p~a(x) = c(a)tp(q)pl(x), c(a)  and cp(q) are continuous functions, 
q = poV2/2, Po is the air density and V is the air flow density. When account is taken of this, we 
can write the bending moment in a section passing through the point (x~, y) of the axis of spar i in the 
form 

Miow(y ) = c(a)(p(q)Mi(Y ) 

where Mi(y ) is the calculated bending moment (1.2). Hence, the curvature of the spar axis which is 
described by the formula [2] 

×;~q(y) = M~q(y)/[EL.(y)] 

is transformed using (1.3), to the form 

×i~(Y) = c( a)tp( q )t~/[ Ef(y) ] 
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Consequently, the initial form of the bending is the same for all the spars. 
In estimating the vibration of the wing, we do not take its basic load, which is counterbalanced by 

elastic forces, into consideration. We do take account of the additional load which is a consequence of 
the additional deformations of the wing accompanying the vibration. Since the road per unit length on 
a spar i is qi~(Y) = c(o~)tP(q)P2(y)Ii and it is applied at the point (~,y) of its axis, the load per unit length 
on the whole wing is applied at the point (Xp, y) (the focus of the wing) with coordinate 

xp = ~ qio~ (Y) xc I E qiaq (Y) 

and this point coincides with the centres of rigidity and mass. Vibration caused by a random flexural 
pulse will therefore remain purely bending vibration and the increment in the angle of attack t~ due to 
the deformation has the form [3] A(x = -l:-laz/Ot. The corresponding increment in the coefficient c(tx) 
is 

ac(a)  = [ac(a) laa]( -v-~ozlaO 

On taking account of the load per unit length which has appeared due to the deformation, then using 
(2.4), (2.5) and (2.7) and cancelling by E/i, we have an equation which differs from (2.9) on the right- 
hand side and now has the form 

p2(Y )(P( q )Ac( o~ ) 

All the spars in the air flow will execute the same bending vibration, subject to this equation, and 
there will be no flutter. 

3. T H E  C A S E  O F  A D E V I A T I O N  O F  T H E  A C T U A L  L O A D  
D I S T R I B U T I O N  F R O M  T H E  E X P E C T E D  L O A D  D I S T R I B U T I O N  

We shall assume that the actual load distribution at an angle of attack ct and a dynamic pressure q 
is described by the product P~q(x)P20'), where the function p~q(X) is not completely identical to the 
function paq(X) which characterizes the expected load distribution over the profile for the same et and 
q. To take this into account, it is necessary to construct a wing such that the elements of the wing skin 
fastened to a single spar partially overlap the elements of the wing skin fastened to a neighbouring spar 
(Fig. 4). On the overlapping segments of the wing skin, which are facing the air flow and associated 
with some single spar, they will either independently take up the load or they will transfer the load to 
the overlapping elements of the wing skin associated with a neighbouring spar. 

In this case, it is necessary to design each spar i and the elements of the wing skin which are fastened 
to it for the perception of a load with the wider segment included between the planes x = x ° and 
x = X~+l, where 

x ° = x  i - ( i - 1 ) A o l m ,  x~+ I = x i + l + A o ( m - i ) / m  (3.1) 

the parameters xi (i = 1 . . . . .  m) have the values (2.6), and by A0, we mean the width of the overlap 
segment between neighbouring spars. Here, in formulae (1.1) and (1.2), which determine the position 
of the axis of a spar i and the calculated bending moment in its section, it is necessary to replace xi by 
x°and xi+l byx~½1. Allowing for this, in the second of these formulae, we replace the integral I i by the 
integral 

g 

Fig. 4. 
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I + =  I PlCx)dx, i = l  ..... m 
xl ) 

which, using relations (3.1) and (2.6) is approximately expressed as 

I i - 1  m - i ] m - 1 A o  =li+Pli l ,  w (3.2) l + = l i +  p l ( x i ) ~ + P l ( X i + l ) m - - 1  m 

where Pli is the value of the function pl(x) in the case of such as x ~ [xi, Xi+l] for which the equality 
(3.2) is satisfied and 

w = (m - 1)A o/b (3.3) 

is the relative magnitude of the overlap. On allowing for the fact that Y_,Plilo is the approximate value 
of the integral ofpl(x) over the interval [0, b], we obtain 

G. = G*(1 + w) (3.4) 

for the total mass of the spars, where G* is expression (1.5) or, if the spars are conical, expression 
(1.6). 

In this case, the approximate expression (2.2) for the mass distribution of the rods which are fastened 
to a spar i takes the form 

gi(Y) = u(y)12ol~ / 4 (3.5) 

where l0 = x]+l - x  ° or, on taking account of expressions (3.1) (2.6) and (3.3), we have 

l 0 = [b + (m - l)Ao]/m = b(l + w)/m 

Using relations (2.1) and (3.2) and integrating Y-gi(Y) with respect toy from 0 to 1, we obtain an expression 
for the total mass of the rods linked with the spars in the form 

G,: = (a o + aOpPb2(1 + w)a/(8t~Ro m2) (3.6) 

On estimating, in the case under consideration, the total mass of the strips which form the upper 
surface of the wing, it is necessary to replace x i+/by ' i+  i in formulae (1.10) and (1.11). Then, by using 
these formulae and taking account of the fact that, by virtue of (3.1) and (3.3) 

Z(x]+ I - x  °) = b(1 + w) 

and, also, using equality (3.2) and the relationp°(x) = aavl(X), we obtain an estimate for the total mass 
of the strips forming the upper surface of the wing 

G "< - PRo(3aoPblt~ -I )~(1 + w)l 2 (3.7) 

The total mass G"  of the strips forming the lower surface of the wing has a limit which is obtained from 
limit (3.7) by replacing a0 by al. 

We will now deal the vibration of the wing. In the case under consideration, the formulae obtained 
from (2.4) and (2.5) by replacing Ii by I* hold. Furthermore, formula (3.5) holds. As a consequence of 
this, the centre of rigidity and the centre of mass are at the same point (x., y), where x, = ~ "÷ c ~ ,+ 2 d  i X i l  Zd i" 

Hence, the equation of the free bending vibration of a wing in a vacuum (2.8) which, after using the 
above mentioned formulae and cancelling out Y.J~, takes a form similar to (2.9), holds. 

It follows from this equation that all the spars will execute the same free vibration in the case of 
the same initial form of flexure. The initial flexure of the spar is the same if the curvature of the axis 
×iCv)= M*(y)/[EJi(y))], where Mi*(y ) is the bending moment in a section of the spar i, is the same in 
the case of any ith spar. Here, using formula (2.4) with Ii replaced by I]-and introducing M*(y) = I*l(y), 
we note that the function ×i(y) is the same for all spars if the ratio I'~/I~ (i = 1 . . . . .  m)  is constant, 
where I~, taken with the coefficient p2(y), characterizes the fraction of the load per unit length on the 
wing which is taken up by a spar i. Hence, the condition for identical bending of the spars has the 
form 
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b 

1 " = I ~  Z 1 7 1 E l ~ ,  i = l  . . . . .  m, Z17 • =J p ~ ( x ) d x  (3.8) 
0 

The wing load per unit length on the segment, where the wing skin elements, linked with the wing 
spars i and (i + 1), overlap, is p2(Y)/i-, where 

x~÷l 
I 7 =  S Paq(x)dx, i = l  ..... m - 1  

The relative fraction of 13/from this load taken up by the spar (i + 1), is found using (3.8) from the 
equalities 

1 

X i ÷ l  

17. = S p (x)ax-13d? (130 --I) 

i=l ..... m-l 

We assume that 13i ~ [0, I] (i = I,..., m - I) and ap~q(x) <~p1(x)/'%, where rlp is the safety factor. 
Then, in calculating the wing skin elements participating in the formation of the lower wing surface, 
we can take al = i, thereby equating the calculated load on the lower wing surface to the total calculated 
load. 

In considering the vibration of the wing in an air flow, we introduce p~(x) = p~(x)c(a), where c(c 0 
is a function of the angle of attack ct. Since the load per unit length (x c, y) on a spar i is applied at the 

" • " *C * point (x c, y) of its axis, the load on the whole wing is applied at a point with a coordinate xp = Zlix~/F_,Ii, 
and this point, by virtue of (3.8), coincides with the centre of mass and the centre of rigidity. Hence, 
the bending vibration of the wing will not be transformed into bending-torsional vibration and is 
described by an equation which can be obtained if, in an equation of the form of (2.8), account is taken 
of the air load caused by the deformation and use is made of expressions (2.4) and (2.5) with I i replaced 
by I~ and expression (3.5) after division by X/~. An equation is obtained which differs from (2.9) in that 
l0 is.on the left-hand side instead o f / .  and the right-hand side has the form 

P2 (Y)AC(O0 c-l (CX)Z l 7 1 Z li + 

All the spars will execute the same vibration, which does not lead to flutter. 

4. C O N C L U D I N G  R E M A R K S  

We wish to emphasize certain special features of the construction of the wing. The external form of 
the spars is assumed to be the same but the thickness of the end sections of each spar is proportional 
to the loadp2(y)I, +. which it takes up and, if the external shape is close to conical and the load distribution 
over the wing span is taken to be uniform, the thickness of the cross-section of a spar is constant along 
its axis. The thickness of the wing profile is close to the external diameter of the spars in the section 
being considered. Note that, if spars with a different external diameter are used in the wing profile then, 
in order to ensure that the spars bend to the same extent, it is necessary to increase their mass, which 
becomes greater than the mass necessary to ensure stability. To control the motion of an aircraft, it is 
advisable to tilt the spars in the plane of the wing with the possibility of: (1) changing the taper of the 
wing and, as a consequence, changing the area of the wing and the magnitude of the lift--to control 
the banking moment, (2) to change the sweepback of the wing, that is, to shift the point of application 
of the lift force along the axis of the fuselage--to control the pitching moment. 

We will now present an example of an estimate of the mass of a wing which employs the proposed design scheme 
using the characteristics of a Yak-18 aircraft: take-off weight Pb = 1100 kg, design load factor coefficient np --- 13.5, 

2 wing area S -- 17 m ,  aspect ratio Z. = 6.61, relative thickness ~0 = 0.15, taper rl = 2 and fuselage diameter 
d 0 ~ l m .  

We find the following additional characteristics: them ean chord of the wing bc = (S/~) 1/2 -~ 1.6 m, the length 
of the wing l = (;kb c - d0)/2 -~ 4.8 m, the chord on the axis of the fuselage b0 = 21]bc/(rl + 1) --- 2.13 m, the 
chord of the wing at the fixing point Co = bc0 ~ 0.305 m and the design load on the wing P = np(Pb/2)(S - bodo)/ 
S ~ 6500 kg. 
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We will now estimate the mass of a wing designed using the proposed scheme with the values of the parameters 
l, b, Co, P indicated above. The wing is assumed to be rectangular and, correspondingly, has a 33% greater area 
than a wing of a Yak-18 aircraft. We assume that the load distribution is uniform over the wing span:p2(y) = const. 
It is assumed that the spars are conical with a radius at the point of at tachment f(0) = 0.145 m. On taking the 
number  of spars as m = 4, and the width of the overlap segment as A0 = 0.05 m, we find, using formula (3.3), the 
value w = 0.0739. Then,  using formulae (3.4) and (1.6), we find the total mass of the spars G,  = 25.5 kg, assuming 
that the alloy B95T is used as the wing material  for which 0 = 2850 kg/m 3 and cr = 62 x 106 kg/m 2. We next assume 
that the rods which are fastened to the spars are conical with a radius at the point of at tachment R0 = 0.005 m. 
We shall take the coefficients which characterize the rated load on the upper and lower surfaces of the wing as 
a0 = 0.6, al = 1. Then,  according to formula (3.6), the mass of the rods is G¢ = 3.81 kg. Next, using formula 
(3.7) and replacing a0 in this formula by al,  we find for an estimate of G" that the mass of the strips which form 
the wing surface is G '  + G"  ~< 0.75 kg. Hence, the total mass of the two wings in the proposed scheme is 2(G. + 
Gc + G" + G") -~ 60 kg. Note that the mass of the wings of a Yak-18 aircraft is significantly greater [4]. 
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